300
Views
0
CrossRef citations to date
0
Altmetric
Articles

Snapshot POD analysis of transient flow in the pilot stage of a jet pipe servo valve

, &
Pages 889-909 | Received 04 Jul 2017, Accepted 10 Sep 2018, Published online: 21 Sep 2018
 

ABSTRACT

The spatial evolution of a turbulent flow in the pilot stage of a jet pipe servo valve at the inlet pressure and deflection angle of the jet pipe is investigated using a large eddy simulation (LES). The pressure of the same flow field is measured by a high frequency dynamic pressure sensor in the experiments and is compared with the results of the LES, as well as their root-mean-square (RMS) and fast Fourier transform (FFT) results. The results of experiments and LES are in good agreement, indicating that LES is able to predict the flow dynamics. Velocity datasets based on LES are utilised to conduct the snapshot proper orthogonal decomposition (snapshot POD) technique. The snapshot POD analysis results of the first 4 modes show a full ability to directly visualise details of the coherent structures. The influences of the inlet pressure and deflection angle of the jet pipe are also discussed. Under different inlet pressures, the velocity eigenfunctions of the first mode are similar, while the locations and strengths of the vortices in high modes are different. The Lamb-Oseen vortices that affect the trajectory of jet streams are observed in the vicinity of the entrances of receiver channels only in the first mode, and several spindly vortices appear in the region of −5 < y/n < −2 in the higher modes and act in opposite directions between adjacent vortices. The flow becomes more turbulent with increasing inlet pressure, and the turbulent structures of the high modes become ineffective from a deflection angle of 0.4° onward.

Additional information

Funding

This work was supported by Natural Science Foundation of Hubei Province [grant number ZRZ2014000117]; National Natural Science Foundation of China [grant number 51475338].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 146.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.