Publication Cover
Natural Product Research
Formerly Natural Product Letters
Volume 31, 2017 - Issue 23
124
Views
7
CrossRef citations to date
0
Altmetric
Short Communication

Neutralising ability of Terminalia fagifolia extract (Combretaceae) against the in vitro neuromuscular effects of Bothrops jararacussu venom

, , , , , , , , , & show all
Pages 2783-2787 | Received 13 Aug 2016, Accepted 31 Jan 2017, Published online: 02 Mar 2017
 

Abstract

The ability of Terminalia fagifolia hydroalcoholic extract (Tf-HE) to neutralise the paralysis and myotoxicity induced by Bothrops jararacussu venom was assayed using mouse phrenic nerve-diaphragm (PND) preparation and two varieties of chick biventer cervicis (BC) preparations. Tf-HE 100 μg/mL and 500 μg/mL were tested against 40 and 200 μg of venom/mL in PND and BC preparations, respectively, using pre- and post-venom incubation treatments. The effects of Tf-HE against the myotoxicity caused by venom were evaluated via histological analysis (PND) and creatine kinase (CK) release (BC). Tf-HE was able to reverse the venom paralysis in both preparation types. The contractures to exogenous ACh in BC preparations showed that Tf-HE may act on extrinsic, preserving those intrinsic postsynaptic receptors. There was a positive correlation between CK and morphological changes. The high non-hemolytic saponin content can explain the Tf-HE efficacy against the toxic effects of B. jararacussu venom in vertebrate neuromuscular preparations.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 861.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.