Publication Cover
Natural Product Research
Formerly Natural Product Letters
Volume 32, 2018 - Issue 15
364
Views
21
CrossRef citations to date
0
Altmetric
Short Communication

Effect of nanoparticle treatment on expression of a key gene involved in thymoquinone biosynthetic pathway in Nigella sativa L.

, , ORCID Icon &
Pages 1858-1862 | Received 17 Jun 2017, Accepted 06 Nov 2017, Published online: 27 Nov 2017
 

Abstract

Thymoquinone is the most important secondary metabolite in black Cumin, which has several pharmaceutical applications. In this study, effect of TiO2 and SiO2 nanoparticles as new elicitors, on expression of Geranyl diphosphate synthase gene (GPPS gene), as a key gene involved in thymoquione biosynthesis pathway was investigated in two Iranian accessions. Plants were treatment in the early flowering stage and after 24 h of 50 and 100 mg/L of each nanoparticle, separately. After RNA extraction, GPPS gene expression was analysed by qRT-PCR method. The results showed that the TiO2 and SiO2 nanoparticles, generally stimulates the GPPS expression. The TiO2 nanoparticles were more effective than SiO2 for the induction of GPPS expression. Also, 100 mg/L treatment of nanoparticles raised gene expression more than 50 mg/L concentration. It can be concluded these nanoparticles can be used as robust elicitors to enhance the production of Thymoquinone in black cumin through up-regulation of related metabolic pathway genes.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 861.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.