366
Views
31
CrossRef citations to date
0
Altmetric
Original Articles

Effects of porosity on the measured fracture energy of brittle materials

Pages 3689-3704 | Received 08 Sep 2003, Accepted 15 Jul 2004, Published online: 22 Aug 2006
 

Abstract

Although it is known that growing cracks will interact with pores, it is unclear whether the magnitude of this effect is sufficient to influence the fracture energy. To study this, experiments have been carried out where cracks have been grown through simple distributions of pores in poly(methyl methacrylate). These show that the applied force required to grow the crack between two pores can be greater than that required to grow the crack in the pore-free material. Direct observation during crack growth shows that this increase in applied force is associated with the crack front becoming curved. Based on these observations, the effect of equiaxed pores on the fracture energy of brittle materials has been quantitatively described. The analysis predicts how the relative fracture energy should be influenced by the pore volume fraction, and that it should be independent of the size of the pores or the fracture energy of the matrix. These predictions give good agreement with experimental measurements in different ceramic materials, in which the microstructure of the matrix surrounding the pores does not change with pore volume fraction.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.