238
Views
47
CrossRef citations to date
0
Altmetric
Original Articles

An isotropic dynamically consistent gradient elasticity model derived from a 2D lattice

&
Pages 3259-3286 | Received 18 Nov 2004, Accepted 09 May 2005, Published online: 28 Nov 2010
 

Abstract

This paper presents a derivation of a second-order isotropic continuum from a 2D lattice. The derived continuum is isotropic and dynamically consistent in the sense that it is unconditionally stable and prohibits the infinite speed of energy propagation. The Lagrangian density of the continuum is obtained from the Lagrange function of the underlying lattice. This density is used to obtain the expressions for standard and higher-order stresses in direct correspondence with the equations of the continuum motion. The derived continuum is characterized by two additional parameters relative to the classical elastic continuum. These are the characteristic lengthscale and a dimensionless continualization parameter, which characterizes indirectly the timescale of the derived continuum. The margins for the latter parameter are found from the stability analysis. It is envisaged that the continualization parameter could be measured employing a high-frequency pulse propagating along the surface of the continuum. Excitation and propagation of such pulse is studied theoretically in this paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.