106
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Adhesion properties of decagonal quasicrystals in ultrahigh vacuum

, , , , , & show all
Pages 945-950 | Received 23 Apr 2005, Accepted 28 Jun 2005, Published online: 19 Aug 2006
 

Abstract

The atomic scale adhesion properties of two high-symmetry surfaces of decagonal Al-Ni-Co quasicrystals have been investigated using atomic force microscopy (AFM) in ultrahigh vacuum. Imaging the surface allowed us to distinguish the plastic regime from the elastic (reversible) regime of tip-sample contact. The work of adhesion of the atomically clean quasicrystal surface in the plastic regime is smaller than that of single crystalline Pt(111) by a factor of 10, reflecting a lower surface energy for the quasicrystal surface. However, the adhesion force must be reduced even further, in order to make measurements outside of the plastic regime possible. We present a strategy for doing this that involves chemical modification of the surface or the tip, together with appropriate choice of mechanical contact parameters.

Acknowledgement

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division, of the U.S. Department of Energy through the Ames Laboratory, Contract No. W-405-Eng-82, and through the Lawrence Berkeley National Laboratory, Contract No. DE-AC02-05CH11231.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.