99
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Optical scattering in glass ceramics

, &
Pages 4125-4130 | Received 30 May 2008, Accepted 15 Oct 2008, Published online: 04 Dec 2010
 

Abstract

The transparency of glass ceramics with nanocrystals is generally higher than that expected from the theory of Rayleigh scattering. We attribute this ultra-transparency to the spatial correlation of the nanoparticles. The structure factor is calculated for a simple model system, the random sequential addition (RSA) of equal spheres, at different volume filling factor. The spatial correlation given by the constraint that particles cannot superimpose produces a diffraction peak with a low S(q) in its low-q tail, which is relevant for light scattering. The physical mechanism producing high transparency in glass ceramics is demonstrated to be the low density fluctuation in the number of scatterers. The addition of a size distribution of the spherical particles produces important changes in the q-dependence of the scattering intensity in the region of the diffraction peak, but it has minor effects on the low-q tail.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.