219
Views
17
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Finite element simulation of the magneto-mechanical response of a magnetic shape memory alloy sample

&
Pages 2630-2653 | Received 10 Aug 2012, Accepted 28 Feb 2013, Published online: 02 Apr 2013
 

Abstract

In this paper, the stress- and magnetic field-induced variant reorientation in a magnetic shape memory alloy (MSMA) sample is simulated by using the finite element method. This model is set up based on a three-dimensional setting with the whole sample and the surrounding space taken into account. A typical loading pattern is proposed on the sample. The unknowns of the model governing system include the spatial displacement vector, the scalar magnetic potential and some internal variables related to the effective magnetization vector. By considering the different properties of the unknowns, an iterative computational scheme is proposed to derive the numerical solutions. With the obtained solutions, the magneto-mechanical response of the MSMA sample under different field and stress levels can be predicted. The distributions of the variant state and the effective magnetization in the sample can also be determined. By comparing with the experimental results, it is found that the numerical solutions obtained in this model can predict the response of the MSMA sample at a quantitative level.

Acknowledgments

The work introduced in this paper is supported by a Humboldt postdoctoral fellowship provided by Alexander von Humboldt Foundation, Germany.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.