146
Views
2
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Destruction of Landau levels in asymmetric bilayer nanographene ribbons

, , &
Pages 2812-2825 | Received 04 Apr 2014, Accepted 24 May 2014, Published online: 11 Jul 2014
 

Abstract

Magneto-electronic properties of asymmetric bilayer nanographene ribbons are enriched by geometric structures, interlayer atomic interactions, magnetic quantization and finite-size confinement. There are drastic changes on the band symmetry, the degeneracy of the partial flat bands, the number of band-edge states, the energy dispersion, the carrier density, and the spatial symmetry of the wave function. Quasi-Landau levels might be converted into oscillating bands where extra band-edge states are created. When the upper ribbon is located at the ribbon centre, the Landau wave functions are completely destroyed. Meanwhile, a charge transfer between different layers or different sublattices in the same layer occurs. Furthermore, the density of states, reflecting the band structure, is also severely altered in terms of the number, structure, energy, and height of the prominent peaks.

Notes

This work was supported in part by the National Science Council of Taiwan and the Republic of China under [grant number Nsc 102-2112-M-006-007-MY3].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.