135
Views
14
CrossRef citations to date
0
Altmetric
IWCS

Realistic tunnelling states for the magnetic effects in non-metallic real glasses

ORCID Icon, &
Pages 648-703 | Received 22 Jun 2015, Accepted 13 Oct 2015, Published online: 24 Dec 2015
 

Abstract

The discovery of magnetic and compositional effects in the low-temperature properties of multi-component glasses has prompted the need to extend the standard two-level systems (2LSs) tunnelling model. A possible extension assumes that a subset of tunnelling quasi-particles is moving in a three-welled potential (TWP) associated with the ubiquitous inhomogeneities of the disordered atomic structure of the glass. We show that within an alternative, cellular description of the intermediate-range atomic structure of glasses the tunnelling TWP can be fully justified. We then review how the experimentally discovered magnetic effects can be explained within the approach where only localized atomistic tunnelling 2LSs and quasi-particles tunnelling in TWPs are allowed. We discuss the origin of the magnetic effects in the heat capacity, dielectric constant (real and imaginary parts), polarization echo and SQUID magnetization in several glassy systems. We conclude by commenting on a strategy to reveal the mentioned tunnelling states (2LSs and TWPs) by means of atomistic computer simulations and discuss the microscopic nature of the tunnelling states in the context of the potential energy landscape of glass-forming systems

Acknowledgements

One of us (SB) acknowledges support from the Italian Ministry of Education, University and Research (MIUR) through a Ph.D. Grant of the Progetto Giovani (ambito indagine n.7: materiali avanzati (in particolare ceramici) per applicazioni strutturali), as well as from the Bando VINCI-2014 of the Università Italo-Francese. We are very grateful to Maksym Paliienko for his help with data fitting and manuscripts preparation. GJ gratefully acknowledges stimulating discussions with A.S. Bakai.

Notes

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.