114
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Microscopic mechanism responsible for radiation-enhanced diffusion of impurity atoms

Pages 2412-2428 | Received 22 Jun 2015, Accepted 08 Jun 2016, Published online: 10 Jul 2016
 

Abstract

Modelling of radiation-enhanced diffusion (RED) of boron and phosphorus atoms during irradiation of silicon substrates respectively with high- and low-energy protons was carried out. The results obtained confirm the previously arrived conclusion that impurity diffusion occurs by means of the ‘impurity atom – intrinsic point defect’ pairs and that the condition of the local thermodynamic equilibrium between substitutional impurity atoms, nonequilibrium point defects created by irradiation, and the pairs is valid. It is shown that using RED, one can form a special impurity distribution in the semiconductor substrate including retrograde profiles with increasing impurity concentration in the bulk of the semiconductor. In addition, modelling of radiation-induced segregation of nitrogen implanted in stainless steel modified by titanium is carried out. It is shown that vacancy-impurity complexes are responsible for nitrogen diffusion in an implanted layer excluding the ‘tail’ region. The calculations performed give clear evidence in favour of further investigation of various doping processes based on RED, especially the processes of plasma doping, to develop a cheap method for forming specific impurity distributions in the near surface region.

Notes

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.