252
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Effects of stacking fault energies on formation of irradiation-induced defects at various temperatures in face-centred cubic metals

, , , , &
Pages 3034-3047 | Received 02 Feb 2018, Accepted 16 Aug 2018, Published online: 06 Sep 2018
 

ABSTRACT

By using the six sets of interatomic potentials for face-centred cubic metals that differ in the stacking fault energy (SFE) while most of the other material parameters are kept almost identical, we conducted molecular dynamics simulations to evaluate the effects of SFE on the defect formation process through collision cascades. The simulations were performed at 100, 300 and 600 K, with a primary knock-on atom energy of 50 keV. The number of residual defects is not dependent on the SFE at all the temperatures. For clusters of self-interstitial atoms (SIAs), their clustering behaviour does not depend on the SFE, either. However, the ratio of glissile SIA clusters tends to decrease with increasing SFE. This is because perfect loops, the edges of which split into two partial dislocations with stacking fault structures between them in most cases, prefer to form at lower SFEs. The enhanced formation of glissile SIA clusters at lower SFEs can also be observed even at increased temperature. Because most large vacancy clusters have stacking fault structures, they preferentially form at lower SFE; however, it is observed only at the lowest temperature, where the mean size increases with decreasing SFE. At higher temperatures, because of their extremely low number density, the vacancy clustering behaviour does not depend on the SFEs.

Additional information

Funding

This work was funded by Grant-in-Aids for Scientific Research (B) from the Japan Society for the Promotion of Science (grant numbers JP17H03518 and JP17KT0039).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.