943
Views
76
CrossRef citations to date
0
Altmetric
Original Articles

Phytoremediation of Landfill Leachate with Colocasia esculenta, Gynerum sagittatum and Heliconia psittacorum in Constructed Wetlands

, , , &
Pages 16-24 | Published online: 26 Aug 2014
 

Abstract

This study assessed the accumulation of Cd (II), Hg (II), Cr (VI) and Pb (II) in Gynerium sagittatum (Gs), Colocasia esculenta (Ce) and Heliconia psittacorum (He) planted in constructed wetlands treating synthetic landfill leachate. Sixteen bioreactors were operated in two experimental blocks. Metal concentrations in the influent and effluent; root, stem, branch and leaves of plants were analysed, as well as COD, N-NH4+, TKN, T, pH, ORP, DO, and EC. Average removal efficiencies of COD, TKN and NH4+-N were 66, 67 and 72%, respectively and heavy metal removal ranged from 92 to 98% in all units. Cr (VI) was not detected in any effluent sample. The bioconcentration factors (BCF) were 100 -102. The BCF of Cr (VI) was the lowest: 0.59 and 2.5 (L kg−1) for Gs and He respectively; whilst Cd (II) had the highest (130–135 L kg−1) for Gs. Roots showed a higher metal content than shoots. Translocation factors (TF) were lower, He was the plant exhibiting TFs >1 for Pb (II), Cr (T) and Hg (II) and 0.4–0.9 for Cd (II) and Cr (VI). The evaluated plants demonstrate their suitability for phytoremediation of landfill leachate and all of them can be categorized as metals accumulators.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.