132
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Experimental and theoretical approaches for Cd(II) biosorption from aqueous solution using Oryza sativa biomass

, , &
Pages 1096-1103 | Published online: 16 May 2016
 

ABSTRACT

Biomass of Oryza sativa (OS) was tested for the removal of Cd(II) ions from synthetic and real wastewater samples. Batch experiments were conducted to investigate the effects of operating parameters on Cd(II) biosorption. Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive x-ray spectroscopy were used to examine the surface characteristics of the Cd(II)-loaded biomass. The maximum removal efficiency of Cd(II) was 89.4% at optimum pH 6.0, biosorbent dose 10.0 g L−1, initial Cd(II) 50 mg L−1, and biosorbent particle size 0.5 mm. The applicability of Langmuir and Freundlich isotherms to the sorbent system implied the existence of both monolayer and heterogeneous surface conditions. Kinetic studies revealed that the adsorption process of Cd(II) followed the pseudo-second-order model (r2: 0.99). On the theoretical side, an adaptive neuro-fuzzy inference system (ANFIS) was applied to select the operating parameter that mostly influences the Cd(II) biosorption process. Results from ANFIS indicated that pH was the most influential parameter affecting Cd(II) removal efficiency, indicating that the biomass of OS was strongly pH sensitive. Finally, the biomass was confirmed to adsorb Cd(II) from real wastewater samples with removal efficiency close to 100%. However, feasibility studies of such systems on a large-scale application remain to be investigated.

Acknowledgment

The authors would like to thank the chemist Shaimaa Fadly and members of the Electron Microscopy Unit, Faculty of Science, Alexandria University for their assistance during the development of the experimental protocol.

Funding

This work was funded by the Environmental Biology Laboratory of Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, Egypt.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.