175
Views
8
CrossRef citations to date
0
Altmetric
Articles

Removal of prometryn from hydroponic media using marsh pennywort (Hydrocotyle vulgaris L.)

, , , , &
Pages 909-913 | Published online: 06 Jun 2018
 

ABSTRACT

The aquatic plant Hydrocotyle vulgaris was evaluated for its efficacy in removing prometryn from nutrient solution. Under optimized experimental conditions, up to 94.0% of the initial prometryn was removed from the hydroponic culture medium by H. vulgaris in 30 days. The concentration of prometryn decreased from the initial level of 0.55 ± 0.013 mg/L to 0.036 ± 0.001 mg/L at the end of the experimental period. The removal kinetics followed first-order kinetic equation (Ct = 0.4569e−0.09t). Half-life (t1/2) of prometryn was greatly shortened from 27.16 days (without plant) to 5.58 days (with H. vulgaris). Approximately 22% of the initial prometryn residue was found in H. vulgaris tissue, while 11.7% was degraded by the plant in 30 days. The metabolites of prometryn detected were 2,4-diamino-1,3,5-triazine (in the hydroponic culture medium) and 2,4,6-trihydroxy-1,3,5-triazine (in plant tissue) after 30 days. The results indicate that H. vulgaris can be used for phytoextraction of prometryn and could potentially be effective in removing other s-trazine pesticides from contaminated aquatic ecosystems.

Additional information

Funding

This work was supported by the National Natural Science Fund of China (No. NSFC31460551, NSFC41461059, NSFC41563014).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.