172
Views
7
CrossRef citations to date
0
Altmetric
Articles

Exogenous succinic acid mediates responses of Larix olgensis A. Henry to cadmium stress

, , , , , ORCID Icon & show all
Pages 742-751 | Published online: 18 Jan 2019
 

Abstract

Trace metal contamination of soil is an increasing problem. Organic acid application can restore trace metal elements such as cadmium (Cd) in contaminated soil. Changbai larch (Larix olgensis A. Henry) is an economically important forestry species in northeast China; however, growth is inhibited by severe Cd contamination. We investigated the effects of different concentrations of exogenous succinic acid (SA) on Cd tolerance and physiological and morphological toxicity in L. olgensis seedlings. Seedlings were planted in pots containing Cd-contaminated or uncontaminated Haplic Cambisol. Seedlings in Cd-contaminated soil were treated daily with SA solution at 0, 0.04, 0.2, 1.0, and 2.0 mmol kg−1 of soil for 10, 20 or 30 days. Cd treatment induced seedling damage and significantly increased the relative conductivity and malondialdehyde content of the leaves, inhibiting soluble protein and proline contents, superoxide dismutase and peroxidase activity, chlorophyl fluorescence and pigment content. Decreases in the length, surface area, volume of roots and leaves, and specific root length were also observed. Effects increased in control plants with time. SA treatment also reduced the Cd content of the fine roots and leaves and Mg, K, and Ca contents. Moreover, plant growth was significantly promoted and damage was reversed, especially at 5.0 and 10.0 mmol L−1 SA for 30 days. SA therefore alleviated Cd-induced injury, improving tolerance to Cd stress. SA application combined with afforestation could therefore help restore Cd-contaminated soil in northeast China. Further studies aimed at determining the detoxification mechanism of L. olgensis seedlings are now required.

Acknowledgments

We thank Dr. Guoyou Chen (Heilongjiang Academy of Agricultural Sciences, China) for his assistance in Cd determination of leaf and fine root samples. We are also grateful for editors and reviewers for their help and valuable suggestion.

Additional information

Funding

This work was financially supported by the National Natural Science Foundation of China (31370613), the Fundamental Research Funds for the Central Universities (2572017CA03), and Harbin Science and Technology Bureau Youth Science and Technology Innovation Project (2102RFQXN019).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.