2,237
Views
29
CrossRef citations to date
0
Altmetric
Articles

Accumulation of six PFAS compounds by woody and herbaceous plants: potential for phytoextraction

, , , &
Pages 1538-1550 | Published online: 10 Jul 2020
 

Abstract

Per and polyfluoroalkyl substances (PFAS) consist of a large group of compounds used to make products more resistant to stains, grease, and water and for fire suppression. They have been widely detected in the environment and exposure has been linked to adverse human health effects. Phytoremediation could be used to remediate PFAS-impacted sites, but there is little information on herbaceous and woody plant species uptake of PFAS compounds from soil. A greenhouse study evaluated the potential for eight herbaceous and seven woody plant species to absorb PFAS compounds. Six PFAS compounds: PFPeA, PFHxA, PFOA, PFBS, PFHxS, and PFOS were added weekly to irrigation water, and the plants grown for up to 14 weeks after an initial establishment period. Significant accumulation of all PFAS compounds occurred in at least one plant species. Mass recovery in above-ground tissue by the best performing plant ranged from a low of 3.8% for PFOS by Festuca rubra to a high of 42% for PFPeA by Schedonorus arundinaceus. Hyperaccumulation, defined as tissue/soil concentrations >10/1, was observed for all six PFAS compounds in at least one plant species. These results demonstrate the potential use of phytoremediation as a tool for remediating PFAS-contaminated sites.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.