64
Views
3
CrossRef citations to date
0
Altmetric
Articles

Efficient implementation of parametric spectral estimation techniques for DNA exon prediction

, , &
Pages 1200-1221 | Received 05 Nov 2019, Accepted 06 Jun 2020, Published online: 01 Jul 2020
 

Abstract

This paper is mainly concerned with the application of different parametric spectral estimation techniques on deoxyribonucleic acid (DNA) sequences. The objective of this study is to allow the analysis of these sequences for useful information extraction such as exon information. It is known that the exon, if existing, is represented with a spectral peak at the normalized frequency of 0.667. A comparison study is presented between Burg, Covariance, Modified Covariance, Yule-Walker, MUltiple SIgnal Classification (MUSIC) and Auto-Regressive Moving Average (ARMA) techniques for efficient representation of DNA sequences in the frequency domain for further exon prediction. Moreover, to filter the out-of-band noise that appears in the frequency domain in the prediction process, an inverse Chebyshev bandpass filter tuned at 0.667 is utilized. The obtained results reveal the importance of bandpass filtering and ensure that Burg, Covariance and Modified Covariance techniques are the best for exon prediction with a detection range of about 60 dB.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 606.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.