108
Views
0
CrossRef citations to date
0
Altmetric
Articles

Mesoporous aluminum impregnated rubber seed shell waste enriched with calcium as adsorbent material for the removal of microbial DNA in aqueous solution

, , &
Pages 183-219 | Received 26 May 2021, Accepted 03 Jan 2022, Published online: 12 Jan 2022
 

Abstract

Water contamination by pathogens and diseases induced by these pathogens is a major water quality issue all over the world. Poor public health has been linked to tap water polluted with DNA harboring antibiotic resistance genes sequence. According to HSAB concept, surface modification of rubber seed shell waste with alumina (AIRSS) as novel agro-waste adsorbent creates more active surface constituents for DNA adsorption. The proximate, ultimate and EDAX analysis provides the percentage levels of ash concentration, volatile, moisture and fixed carbon content, elemental composition present in the adsorbent. The structural features of AIRSS were determined using FT-IR, SEM and XRD. In order to improve reaction conditions, the effect of pH, temperature, adsorbent amount, and reaction time is also examined. The highest percent of DNA removal (92.5%) was achieved at the optimum conditions: 2 g/L at pH 4, contact time 120 minutes as compared to the conventional methods. The DNA adsorbs onto the surface of AIRSS through physical (vander Waals force) and chemical interactions, as demonstrated by kinetics and spectroscopic analyses. Changes in enthalpy (H), free energy (G), and entropy (S) indicate that adsorption is a spontaneous and exothermic process, according to thermodynamic parameters. The results of the experiments showed that the prepared AIRSP adsorbent could be used to remove DNA from water. The efficacy of AIRSS for the removal of DNA has decreased after nine months of storage and use. Low pH and the presence of AIRSS improved DNA-AIRSS adsorption, according to our findings.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 606.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.