99
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Lung Permeability, Antioxidant Status, and NO2 Inhalation: A Selenium Supplementation Study in RatsFootnote

, , , , , , , , & show all
Pages 284-294 | Received 31 Jan 2004, Accepted 06 Apr 2006, Published online: 14 Feb 2007
 

Abstract

Little is known about antioxidant status, selenium status in particular, and lung response to NO2, which acts as a proinflammatory air pollutant. The effects of a low selenium diet (1.3 μg Se/d) with or without selenium supplementation were therefore studied in 128 Wistar rats, 2 mo old, male exposed to either acute (50 ppm, 30 min), intermittent subacute (5 ppm, 6 h/d, 5 d), intermittent long-term NO2 (1 ppm, 10 ppm, 6 h/d, 5 d/wk, 28 d), or normal atmospheric air (controls). Following sacrifice, measurements of lipid peroxidation (thiobarbituric acid-reactive substances, chemiluminescence), antioxidative protective enzymes (glutathione peroxidase [GPx], superoxide dismutase [SOD], glutathione S-transferase [GST], ceruloplasmin), lung damage (lactate dehydrogenase, alkaline and acid phosphatases), lung permeability (total protein, albumin), and inflammation (cell populations), along with the determination of new biomarkers such as CC16 (Clara-cell protein), were performed in serum and bronchoalveolar lavage fluid (BALF). While selenium-supplemented animals had increased GPx activity in serum prior to inhalation experiments, they also had decreased BALF CC16, blood SOD, and GST levels. Nevertheless, the protective role of normal selenium status with respect to NO2 lung toxicity was evident both for long-term and acute exposures, as the increase in BALF total proteins and corresponding decrease in serum (indicating increased lung permeability) was significantly more pronounced in selenium-deficient animals. During the various inhalation experiments, serum CC16 demonstrated its key role as an early marker of increased lung permeability. These findings corroborate the important role of selenium status in NO2 oxidative damage modulation, but also indicate, in view of its negative impact on CC16, a natural anti-inflammatory and immunosuppressor, that caution should be used prior to advocating selenium supplementation.

Notes

∗These studies are supported by the European Union (BIOART project IC15CT980336).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 482.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.