179
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

The Role of p53 in Silica-Induced Cellular and Molecular Responses Associated with Carcinogenesis

, , , , , , , , & show all
Pages 1509-1519 | Received 10 Mar 2009, Accepted 15 May 2009, Published online: 02 Nov 2009
 

Abstract

Crystalline silica (silica), a suspected human carcinogen, produces an increase in reactive oxygen species (ROS) when fractured using mechanical tools used in several occupations. Although ROS has been linked to apoptosis, DNA damage, and carcinogenesis, the role of enhanced ROS production by silica in silica-induced carcinogenesis is not completely understood. The goal of this study was to compare freshly fractured and aged silica-induced molecular alterations in human immortalized/transformed bronchial epithelial cells (BEAS-IIB) and lung cancer cells with altered (H460) or deficient (H1299) p53 expression. Exposure to freshly fractured or aged silica produced divergent cellular responses in certain downstream cellular events, including ROS production, apoptosis, cell cycle and chromosomal changes, and gene expression. ROS production increased significantly following exposure to freshly fractured silica compared to aged silica in BEAS-IIB and H460 cells. Apoptosis showed a comparable enhanced level of induction with freshly fractured or aged silica in both cancer lines with p53 functional changes. p53 protein was present in the BEAS-IIB and was absent in cancer cell lines after silica exposure. Exposure to freshly fractured silica also resulted in a rise in aneuploidy in cancer cells with a significantly greater increase in p53-deficient cells. Cytogenetic analysis demonstrated increased metaphase spreads, chromosome breakage, rearrangements, and endoreduplication in both cancer cells. These results suggest that altered and deficient p53 affects the cellular response to freshly fractured silica exposure, and thereby enhances susceptibility and augments cell proliferation and lung cancer development.

Acknowledgements

The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the National Institute for Occupational Safety and Health.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 482.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.