293
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Integrative Analyses for Omics Data: A Bayesian Mixture Model to Assess the Concordance of ChIP-chip and ChIP-seq Measurements

, , , , , , , , & show all
Pages 461-470 | Published online: 11 Jun 2012
 

Abstract

The analysis of different variations in genomics, transcriptomics, epigenomics, and proteomics has increased considerably in recent years. This is especially due to the success of microarray and, more recently, sequencing technology. Apart from understanding mechanisms of disease pathogenesis on a molecular basis, for example in cancer research, the challenge of analyzing such different data types in an integrated way has become increasingly important also for the validation of new sequencing technologies with maximum resolution. For this purpose, a methodological framework for their comparison with microarray techniques in the context of smallest sample sizes, which result from the high costs of experiments, is proposed in this contribution. Based on an adaptation of the externally centered correlation coefficient (CitationSchäfer et al. 2009), it is demonstrated how a Bayesian mixture model can be applied to compare and classify measurements of histone acetylation that stem from chromatin immunoprecipitation combined with either microarray (ChIP-chip) or sequencing techniques (ChIP-seq) for the identification of DNA fragments. Here, the murine hematopoietic cell line 32D, which was transduced with the oncogene BCR-ABL, the hallmark of chronic myeloid leukemia, was characterized. Cells were compared to mock-transduced cells as control. Activation or inhibition of other genes by histone modifications induced by the oncogene is considered critical in such a context for the understanding of the disease.

Acknowledgments

Martin Schäfer and Katja Ickstadt are supported by the Deutsche Forschungsgemeinschaft (Research Training Group Statistical Modeling). Hans-Ulrich Klein and Martin Dugas are supported by the José Carreras Foundation (DJCLS 09/04).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 482.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.