167
Views
4
CrossRef citations to date
0
Altmetric
Articles

Fractionation of Heavy Metals in Mine Tailings Amended with Composted Manure

, , &
Pages 148-161 | Published online: 12 Dec 2018
 

ABSTRACT

This study evaluated the effect of composted cow manure (CCM) on the chemical fractionation and retention degree of heavy metals (HMs) in mine tailings from Zimapán, México. In a greenhouse experiment, mine tailings from three deposits were incubated for 3 months; experimental units were placed in a PVC container, where increasing doses of CCM were applied. HM pseudo-total concentrations, HM extractions with ethylenediaminetetraacetic acid (EDTA, 0.05 M), and a sequential chemical extraction (SCE) were carried out. The HM concentrations were determined by atomic absorption spectrophotometry. The pseudo-total concentrations of Pb, Cu, Cd, and Ni found were up to 1506, 206, 27, and 23 mg kg−1, respectively; extractable Pb was up to 42%; 21% for Cu; 51% for Cd; and 16% of Ni of the pseudo-total concentrations of each metal. Treatment with 12% of CCM in mine tailing decreased EDTA-extractable HM concentrations, while the SCE revealed a decrease in exchangeable fraction and an increase in the organic fraction of HM. A positive correlation between CCM application and organic fractions of HMs was found, although the highest increasements were recorded in the organic fraction.

Additional information

Funding

This work was supported by the Tecnológico Nacional de México.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.