216
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Stretching and bending deformations due to normal and shear tractions of doubly curved shells using third-order shear and normal deformable theory

&
Pages 1276-1296 | Received 30 Dec 2015, Accepted 12 May 2016, Published online: 04 Nov 2016
 

ABSTRACT

We analyze static infinitesimal deformations of doubly curved shells using a third-order shear and normal deformable theory (TSNDT) and delineate effects of the curvilinear length/thickness ratio, a/h, radius of curvature/curvilinear length, R/a, and the ratio of the two principal radii on through-the-thickness stresses, strain energies of the in-plane and the transverse shear and normal deformations, and strain energies of stretching and bending deformations for loads that include uniform normal tractions on a major surface and equal and opposite tangential tractions on the two major surfaces. In the TSNDT the three displacement components at a point are represented as complete polynomials of degree three in the thickness coordinate. Advantages of the TSNDT include not needing a shear correction factor, allowing stresses for monolithic shells to be computed from the constitutive relation and the shell theory displacements, and considering general tractions on bounding surfaces. For laminated shells we use an equivalent single layer TSNDT and find the in-plane stresses from the constitutive relations and the transverse stresses with a one-step stress recovery scheme. The in-house developed finite element software is first verified by comparing displacements and stresses in the shell computed from it with those from either analytical or numerical solutions of the corresponding 3D problems. The strain energy of a spherical shell is found to approach that of a plate when R/a exceeds 10. For a thick clamped shell of aspect ratio 5 subjected to uniform normal traction on the outer surface, the in-plane and the transverse deformations contribute equally to the total strain energy for R/a greater than 5. However, for a cantilever shell of aspect ratio 5 subjected to equal and opposite uniform tangential tractions on the two major surfaces, the strain energy of in-plane deformations equals 95–98% of the total strain energy. Numerical results presented herein for several problems provide insights into different deformation modes, help designers decide when to consider effects of transverse deformations, and use the TSNDT for optimizing doubly curved shells.

Acknowledgment

RCB dedicates this article to his esteemed colleague and dear friend, Professor J. N. Reddy on his 70th birthday.

Funding

This work was partially supported by the Office of Naval Research Grant N00014-16-1-2309 to Virginia Polytechnic Institute and State University with Dr. Y. D. S. Rajapakse as the Program Manager. The views expressed in the article are those of the authors and neither of the funding agency nor of authors' institutions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 423.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.