2,778
Views
25
CrossRef citations to date
0
Altmetric
Perspective

Harnessing OLIG2 function in tumorigenicity and plasticity to target malignant gliomas

, , , &
Pages 1654-1660 | Received 24 Jan 2017, Accepted 25 Jul 2017, Published online: 01 Sep 2017

Figures & data

Figure 1. OLIG2+ mitotic cells and OLIG2 function in glioma cell growth (A) In a murine model of proneural GBM, Olig2 knockout delays tumor growth, and changes the gene expression profile from the proneural to the astrocyte-associated classical phenotype, leading to increased EGFR expression and sensitivity to EGFR inhibitors. In addition, the induced suicide of mitotic OLIG2+ cells blocks tumorigenesis, suggesting an essential role of these cells in glioma initiation. (B) In both proneural and classical human GBM cell lines, OLIG2 knockdown downregulates PDGFRA expression, whereas the effect of OLIG2 silencing on full-length EGFR expression differs by genetic background. In proneural OPC-like GSCs, OLIG2 knockdown may exhibit upregulation or no change in the of EGFR expression, resulting in a classical or mesenchymal phenotype shift. In contrast, silencing of OLIG2 in classical NPC-like GSCs leads to EGFR downregulation and GFAP upregulation, manifesting an astrocyte signature.

Figure 1. OLIG2+ mitotic cells and OLIG2 function in glioma cell growth (A) In a murine model of proneural GBM, Olig2 knockout delays tumor growth, and changes the gene expression profile from the proneural to the astrocyte-associated classical phenotype, leading to increased EGFR expression and sensitivity to EGFR inhibitors. In addition, the induced suicide of mitotic OLIG2+ cells blocks tumorigenesis, suggesting an essential role of these cells in glioma initiation. (B) In both proneural and classical human GBM cell lines, OLIG2 knockdown downregulates PDGFRA expression, whereas the effect of OLIG2 silencing on full-length EGFR expression differs by genetic background. In proneural OPC-like GSCs, OLIG2 knockdown may exhibit upregulation or no change in the of EGFR expression, resulting in a classical or mesenchymal phenotype shift. In contrast, silencing of OLIG2 in classical NPC-like GSCs leads to EGFR downregulation and GFAP upregulation, manifesting an astrocyte signature.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.