347
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of Pediatric ATD Biofidelity as Compared to Child Volunteers in Low-Speed Far-Side Oblique and Lateral Impacts

, , , , , & show all
Pages S206-S214 | Received 18 Mar 2014, Accepted 01 Jun 2014, Published online: 11 Oct 2014
 

Abstract

Objective: Motor vehicle crashes are a leading cause of injury and mortality for children. Mitigation of these injuries requires biofidelic anthropomorphic test devices (ATDs) to design and evaluate automotive safety systems. Effective countermeasures exist for frontal and near-side impacts but are limited for far-side impacts. Consequently, far-side impacts represent increased injury and mortality rates compared to frontal impacts. Thus, the objective of this study was to evaluate the biofidelity of the Hybrid III and Q-series pediatric ATDs in low-speed far-side impacts, with and without shoulder belt pretightening.

Methods: Low-speed (2 g) far-side oblique (60°) and lateral (90°) sled tests were conducted using the Hybrid III and Q-series 6- and 10-year-old ATDs. ATDs were restrained by a lap and shoulder belt equipped with a precrash belt pretightener. Photoreflective targets were attached to the head, spine, shoulders, and sternum. ATDs were exposed to 8 low-speed sled tests: 2 oblique nontightened, 2 oblique pretightened, 2 lateral nontightened, 2 lateral pretightened. ATDs were compared with previously collected 9- to 11-year-old (n = 10) volunteer data and newly collected 6- to 8-year-old volunteer data (n = 7) tested with similar methods. Kinematic data were collected from a 3D target tracking system. Metrics of comparison included excursion, seat belt and seat pan reaction loads, belt-to-torso angle, and shoulder belt slip-out.

Results: The ATDs exhibited increased lateral excursion of the head top, C4, and T1 as well as increased downward excursion of the head top compared to the volunteers. Volunteers exhibited greater forward excursion than the ATDs in oblique nontightened impacts. These kinematics correspond to increased shoulder belt slip-out for the ATDs in oblique tests (ATDs = 90%; volunteers = 36%). Contrarily, similar shoulder belt slip-out was observed between ATDs and volunteers in lateral impacts (ATDs = 80%; volunteers = 78%). In pretightened impacts, the ATDs exhibited reduced lateral excursion and torso roll-out angle compared to the volunteers.

Conclusions: In general, the ATDs overestimated lateral excursion in both impact directions, while underestimating forward excursion of the head and neck in oblique impacts compared to the pediatric volunteers. This was primarily due to pendulum-like lateral bending of the entire ATD torso compared to translation of the thorax relative to the abdomen prior to the lateral bending of the upper torso in the volunteers, likely due to the multisegmented spinal column in the volunteers. Additionally, the effect of belt pretightening on occupant kinematics was greater for the ATDs than the volunteers.

Additional information

Funding

The authors acknowledge the National Science Foundation (NSF) Center for Child Injury Prevention Studies at the Children's Hospital of Philadelphia (CHOP) and the Ohio State University (OSU) for sponsoring this study and its Industry Advisory Board (IAB) members for their support, valuable input, and advice. This material is based upon work supported by the National Science Foundation under Grant Number EEC-1062166. The views presented are those of the authors and not necessarily the views of CHOP, OSU, the NSF, or the IAB members.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 331.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.