120
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Rheological Behavior of Poly[(B‐alkylamino)borazine] in a Fiber Spinning Process

, , , &
Pages 123-142 | Received 14 Aug 2006, Accepted 06 Feb 2007, Published online: 05 Jun 2007
 

Polymer‐derived ceramics (PDCs) are innovative materials with a wide range of novel applications (micro fibers, protective coatings, porous materials, MEMS). Among high‐performance, non‐oxide ceramics, hexagonal boron nitride offers interesting potentialities as fibrous reinforcing agent for ceramic composites. Boron nitride can easily be produced from preceramic polymers and previous studies have shown the great potential of poly[(B‐methylamino)borazines], called polyMAB as melt‐spinnable precursors for the preparation of this type of ceramics. The goal of the present study is to provide a comprehensive structural and rheological characterization of polyMAB‐type polymers using a combination of thermal, structural, and chemical experiments, as well as rheological investigations and constitutive modeling, in order to predict and control polymer spinnability from the early stage of material formation. The results from dynamic shear rheology are consistent with the rheological behavior observed in spinning. The experimental measurements of the fiber diameter during steady spinning put in evidence the difference in extensional rheological behavior and spinnability between samples. Numerical simulations of 1D model of fiber spinning emphasis the importance of heat transfer at the exit from the die and relevant differences for the polymers under investigation in the evolution of spin extensional viscosity along the fiber. The present work evidences for the first time the rheological behavior of polyMAB samples and the link to their chemistry, especially in relation to the fiber spinning process.

Acknowledgments

Professor Corneliu Balan acknowledges the financial support received from the Romanian CNCSIS grant no. 4/2004 and from the Université Claude Bernard Lyon 1, visiting professor program 2004/2005.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 583.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.