413
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Poly(2-hydroxyethyl acrylate) hydrogels containing hyper-branched poly(amidoamine) for sustained drug release

, , &
Pages 228-237 | Received 11 Dec 2015, Accepted 12 May 2016, Published online: 20 Jul 2016
 

ABSTRACT

Hydrogels containing hyper-branched poly(amidoamine) (hb-PAMAM) microenvironments were suggested for the sustained release of ionizable drugs. For this purpose, a series of poly(2-hydroxyethyl acrylate) (PHEA) hydrogels containing hb-PAMAM (PHEA-hb-PAMAM) were prepared by copolymerization of 2-hydroxyethyl acrylate with acryl-terminated hb-PAMAM. The hb-PAMAM was synthesized by the Michael addition reaction of triacryloylhexahydro-1,3,5-triazine (TT) and piperzaine (PZ). By using nonionic Tegafur and ionizable salicylic acid (SA) as model drugs, the release mechanisms of drugs from PHEA-hb-PAMAM hydrogels were investigated. Compared with the release kinetic of Tegafur, the release rate of SA from the hydrogels was evidently slowed down. Moreover, the release rate of SA can be modulated by the addition of salt. This can be attributed to the ionic interaction of SA with hb-PAMAM microenvironments. By analyzing the release kinetics of SA from the hydrogels, it was found that the release of SA followed non-Fickian diffusion.

Supplemental content for this article is available at publisher’s website.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 583.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.