139
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermal conductivity of hydrogenated h-BN nanosheets: a reactive force field study

ORCID Icon
Pages 271-279 | Received 28 Apr 2023, Accepted 30 Jun 2023, Published online: 06 Jul 2023
 

ABSTRACT

Thermal conductivity of hydrogenated hexagonal boron nitride (h-BN) nanosheets was investigated using molecular dynamics simulation method. A newly parameterized reactive force field (ReaxFF) for hydrogen and h-BN interactions was used. ReaxFF was used due to its higher accuracy compared to other simpler interatomic potentials. Accurate thickness selection of a monolayer h-BN nanosheet has been shown to produce high thermal conductivity values for pristine armchair and zigzag nanosheets. It was further found that hydrogenation diminishes thermal conductivity of hydrogenated h-BN nanosheets. This reduction in thermal conductivity was due to the occurrence of sp2 to sp3 bonding transition when hydrogen atoms were placed on top of B and N atoms. The increase in temperature was also found to diminish thermal conductivity due to the occurrence of phonon–phonon scattering at higher temperatures. N-vacancy defect has then been shown to exhibit lower thermal conductivity compared to B-vacancy defect. Furthermore, the removal of more atoms contributes to higher decline in thermal conductivity. However, vacancy defect constructed along vertical direction provides the highest reduction in thermal conductivity. It is expected that this work provides useful insights for the design of an effective hydrogen storage system using these novel h-BN nanosheets.

Acknowledgments

The author is grateful for financial support provided by Universitas Buddhi Dharma through Department for Research, Publication and Community Service.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Correction Statement

This article has been corrected with minor changes. These changes do not impact the academic content of the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 583.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.