131
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Continuum-Based Shape Sensitivity Analysis for 2D Coupled Atomistic/Continuum Simulations Using Bridging Scale Decomposition

&
Pages 232-264 | Received 29 Apr 2013, Accepted 05 Jul 2014, Published online: 25 Sep 2014
 

Abstract

In this paper, we propose the first attempt to perform shape sensitivity analysis for two-dimensional coupled atomistic and continuum problems using bridging scale decomposition. Based on a continuum variational formulation of the bridging scale, the sensitivity expressions are derived in a continuum setting using both direct differentiation method and adjoint variable method. To overcome the issue of discontinuity in shape design due to the discrete nature of the molecular dynamics (MD) simulation, we define design velocity fields in a way that the shape of the MD region does not change. Another major challenge is that the discrete finite element (FE) mass matrix in bridging scale is not continuous with respect to shape design variables. To address this issue, we assume an evenly distributed mass density when evaluating the material derivative of the FE mass matrix. In order to support accuracy verification of sensitivity results using overall finite difference method, we use regular-shaped finite elements and only allow shape change in one direction in our example problems, so that design perturbations can be made to the discrete FE mass matrix. However, the sensitivity formulation is sufficiently general to support irregular-shaped finite elements and arbitrary design velocity fields. The sensitivity analysis results, verified using overall finite difference method, reveal the impact of macroscopic shape design changes on microscopic atomistic responses.

Notes

Color versions of one or more of the figures in the article can be found online at www.tandfonline. com/lmbd.

#Communicated by Greg Hulbert.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 643.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.