279
Views
13
CrossRef citations to date
0
Altmetric
Articles

Transient analysis of laminated composite parabolic arches of uniform thickness

& ORCID Icon
Pages 546-554 | Received 04 Sep 2018, Accepted 17 Jan 2019, Published online: 16 Feb 2019
 

Abstract

In this article, the in-plane forced vibration behavior of transversely isotropic and laminated composite parabolic arches is examined by the unified scheme of the complementary functions method (CFM) and the Laplace transform theoretically. The anisotropy of the material of the arch, and the effects of the axial deformation, rotary inertia, and shear deformation are taken into account in the related assumptions and formulations. The arch is assumed to be made of anisotropic, linear elastic, and homogeneous material. For the solution of the governing equations, the RK5 (5th-order Runge-Kutta) algorithm has been used and for this aim, a software is written in FORTRAN. To transfer the obtained results back to the time space, an appropriate inverse method is used. Numerical results are presented and compared with solutions of ANSYS. As a result, the presented method is proved to be accurate and more efficient than the time integration methods.

Disclosure statement

No potential conflict of interests was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 643.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.