266
Views
17
CrossRef citations to date
0
Altmetric
Articles

Torsional vibration of the porous nanotube with an arbitrary cross-section based on couple stress theory under magnetic field

, , &
Pages 726-740 | Received 09 Jan 2020, Accepted 18 Feb 2020, Published online: 12 Mar 2020
 

Abstract

This article presented a solution for torsion vibration a nanotube made of pores material. Based on the porosity distribution, the material properties are assumed to vary according to a function along radius of nanotube. Moreover, the cross-section area of nanotube varied in the longitudinal direction by nonlinear function. As for the torque effect of the axial magnetic field, the well-known Maxwell’s relation is used. Couple stress theory is employed to study the influence of small-scale on torsional vibration of nanotube. The Navier equation and boundary conditions of the size-dependent porous nanotube were derived by the Hamilton principle. These equations were solved by employing the generalized differential quadrature method. Comparison between the results of the present work with the other paper reveals the accuracy of this study. To the best of authors’ knowledge, so far all previous torsional vibration of nanotube address the case of ignoring porosity. The novelty of this work is to present a solution by taking into account the existence of porosity. Finally, numerical results are presented to study the small scale effect and porosity on the frequency of the porous nanotube.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 643.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.