453
Views
19
CrossRef citations to date
0
Altmetric
Articles

Electro-mechanical performance of smart piezoelectric nanocomposite plates reinforced by zinc oxide and gallium nitride nanowires

ORCID Icon, &
Pages 1954-1967 | Received 26 Mar 2020, Accepted 05 May 2020, Published online: 21 May 2020
 

Abstract

The use of piezoelectric nano-fillers in a non-piezoelectric matrix is a very attractive proposition for developing smart nanocomposite materials with desired electro-mechanical properties. The eco-friendly nanowires (NWs) of zinc oxide (ZnO) and gallium nitride (GaN) are the two candidates used to introduce smart piezoelectric nanocomposite materials. Specifically, in this first effort, we examined the electro-mechanical performance of newly developed composite plates reinforced by piezoelectric ZnO NW and GaN NW of varied volume fractions. The static deflections and natural frequencies of the newly developed bimorph piezoelectric nanocomposite plates subject to electro-mechanical loads are analyzed using a mesh-free method in conjunction with the shape functions of MLS. Using third order shear deformation theory (TDST), the coupled electro-mechanical governing equations for the considered smart plates are obtained and numerically integrated. The effects of the electro-mechanical loading and plate thickness on static deflection and natural frequencies of piezoelectric plates are investigated and discussed. Our predictions reveal that the application of electrical input to the plates can induce greater deflection than the ones introduced by mechanical loads and that ZnO NWs offer greater deflection than GaN NW. However, dynamic analysis indicates that GaN NW-reinforced plates have higher natural frequencies than those reinforced by ZnO NW.

Additional information

Funding

The authors wish to thank NSERC of Canada for their kind support of this research under grant RGPIN-2018-03804.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 643.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.