199
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Growth, grain yield, and water productivity of traditional rice landraces from coastal Bangladesh, as affected by salt stress

, , , & ORCID Icon
Pages 60-73 | Received 23 Jun 2021, Accepted 28 Feb 2022, Published online: 03 Mar 2022
 

ABSTRACT

Salinity is a major abiotic stress limiting the growth, development, and productivity of rice (Oryza sativa L.) worldwide. A 10 × 4 factorial pot experiment consisting of 10 traditional aus rice (summer rice) landraces (Noyontara, Ratul, Rani Ratul, Sribalen, Mala, Kolmilata, Nayanmoni, Noncha, Kopilaice, and Kajollata) and four levels of water salinity (0.36 [control], 5, 10, and 15 dS m−1) was conducted to evaluate the salt tolerance of the popular traditional rice landraces. The results revealed that plant height, shoot dry matter, soil plant analysis development (SPAD) value, panicle number plant−1, filled-grain percentage, 1000-grain weight, grain yield, harvest index, and irrigation-water productivity were significantly affected by water salinity. The highest shoot dry matter, grain yield, and irrigation-water productivity were recorded for Noncha at the highest salinity level of 15 dS m−1, indicating its high salinity-tolerance ability. The 15 dS m−1 salinity level reduced shoot dry matter and grain yield of Kopilaice by 61% and 75%, respectively, relative to Noncha. The tested cultivars could be classified into three categories: (i) salt sensitive that cannot withstand salinity level above 5 dS m−1: Kopilaice, Noyontara, Ratul, Rani Ratul, and Sribalen, (ii) intermediate-salt tolerant that can withstand salinity below 10 dS m−1: Mala and Nayanmoni, and (iii) highly salt tolerant that can withstand salinity up to 15 dS m−1: Noncha, Kolmilata, and Kajollata. Noncha, Kolmilata, and Kajollata were considered promising salt-tolerant cultivars and can be used as valuable genetic resources for developing salinity-tolerant cultivars in the coastal salinity-affected region of Bangladesh.

Acknowledgments

The authors thank the Agrotechnology Discipline, Khulna University, Khulna, Bangladesh for providing necessary support during the experiment.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research was supported by the Ministry of Education, Bangladesh.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 503.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.