511
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Physical chemical properties and cell toxicity of sanding copper-treated lumber

, , , , , , , , & show all
Pages 311-321 | Published online: 21 Mar 2018
 

Abstract

To protect against decay and fungal invasion into the wood, the micronized copper, copper carbonate particles, has been applied in the wood treatment in recent years; however, there is little information on the health risk associated with sanding micronized copper-treated lumber. In this study, wood dust from the sanding of micronized copper azole-treated lumber (MCA) was compared to sanding dust from solubilized copper azole-treated wood (CA-C) and untreated yellow pine (UYP). The test found that sanding MCA released a much higher concentration of nanoparticles than sanding CA-C and UYP, and the particles between about 0.4–2 µm from sanding MCA had the highest percentage of copper. The percentage of copper in the airborne dust from sanding CA-C had a weak dependency on particle size and was lower than that from sanding MCA. Nanoparticles were seen in the MCA PM2.5 particles, while none were detected in the UYP or CA-C. Inductively coupled plasma mass spectrometry (ICP-MS) analysis found that the bulk lumber for MCA and CA-C had relatively equal copper content; however, the PM2.5 particles from sanding the MCA had a higher copper concentration when compared to the PM2.5 particles from sanding UYP or CA-C. The cellular toxicity assays show that exposure of RAW 264.7 macrophages (RAW) to MCA and CA-C wood dust suspensions did not induce cellular toxicity even at the concentration of 200 µg PM2.5 wood dust/mL. Since the copper from the treated wood dust can leach into the wood dust supernatant, the supernatants of MCA, CA-C and UYP wood dusts were subjected to the cellular toxicity assays. The data showed that at the higher concentrations of copper (≥5 µg/ml), both MCA and CA-C supernatants induced cellular toxicity. This study suggests that sanding MCA-treated lumber releases copper nanoparticles and both the MCA and CA-C-treated lumber can release copper, which are potentially related to the observed in vitro toxicity.

Disclaimer

The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the National Institute for Occupational Safety and Health.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 148.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.