Publication Cover
Journal of Intelligent Transportation Systems
Technology, Planning, and Operations
Volume 21, 2017 - Issue 2
381
Views
7
CrossRef citations to date
0
Altmetric
Articles

A statistical process control approach using cumulative sum control chart analysis for traffic data quality verification and sensor calibration for weigh-in-motion systems

, &
Pages 111-122 | Received 20 Apr 2015, Accepted 05 Jun 2016, Published online: 10 Sep 2016
 

ABSTRACT

Weigh-in-motion systems have been widely used by state agencies to collect the traffic data on major state roadways and bridges to support traffic load forecasting, pavement design and analysis, infrastructure investment decision making, and transportation planning. However, the weigh-in-motion system itself poses difficulties in obtaining accurate data due to sensor characteristics that can be sensitive to vehicle speed, weather conditions, and changes in surrounding pavement conditions. This study focuses on developing a systematic methodology to detect weigh-in-motion sensor bias and enhance current practices for weigh-in-motion calibration. A mixture modeling technique using an expectation maximization algorithm was developed to divide the vehicle class 9 gross vehicle weight into three normally distributed components: unloaded, partially loaded, and fully loaded trucks. Then the well-known statistical process control technique cumulative sum control chart analysis was applied to expectation maximization estimates of daily mean gross vehicle weight for fully loaded trucks to identify and estimate shifts in the weigh-in-motion sensor. Special attention was given to the presence of autocorrelation in the data by fitting an autoregressive time-series model and then performing cumulative sum control chart analysis on the fitted residuals. Results from the analysis suggest that the proposed methodology is able to estimate a shift in the weigh-in-motion sensor accurately and also indicate the time point when the system went out of calibration. This methodology can be effectively implemented by state agencies, resulting in more accurate and reliable weigh-in-motion data.

Funding

This work was supported by Minnesota Department of Transportation (grant number 99008WO133).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 419.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.