Publication Cover
Journal of Intelligent Transportation Systems
Technology, Planning, and Operations
Volume 22, 2018 - Issue 5
401
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

A study of realistic dynamic traffic assignment with signal control, time-scale, and emission

, , &
Pages 446-461 | Received 12 Nov 2015, Accepted 25 Aug 2017, Published online: 29 Dec 2017
 

ABSTRACT

Dynamic Traffic Assignment (DTA) is a mathematical framework that with a System Optimal (SO) objective is often used for long-term transport planning, design, and traffic management. However, the conventional SO-DTA formulation gives optimal solutions having an unrealistic vehicle Holding–Back (HB) property. Existing approaches in the literature aiming to resolve the HB problem are either computationally intractable or suffer from recursive parameter selection problem. In addition, most of the existing Signal Control (SC) models considered in the DTA formulation are mixed-integer or nonlinear in nature that are not scalable for large networks. With an exception, there exists a linear signal control model that can only set signal control cycle-length equal to DTA time-slot duration, and thus trades the accuracy of the SO-DTA solution for a more realistic cycle-length. In this article, we address the above issues by proposing a linear Non-Holding-Back SO-DTA with SC (NHB DTA-SC) formulation for single destination networks. The embedded signal control in the proposed framework enables us to set realistic cycle-length using any DTA time-slot (i.e., flexible time-scale). We find that the time-scale has a significant impact on traffic density which affects vehicle-discharged emissions. To this end, we develop a novel linear Emission-Based DTA with SC (EB DTA-SC) formulation that obtains NHB flows as well as lowest possible emission. Our results show that there is a 32% difference between emission estimated by 60-second and 5-second time-scales.

Acknowledgment

This work is supported by the Australian Research Council (ARC) Future Fellowships grants FT120100723.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 419.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.