Publication Cover
Journal of Intelligent Transportation Systems
Technology, Planning, and Operations
Volume 28, 2024 - Issue 4
225
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Lane change for self-driving in highly dense traffic using motion based uncertainty propagation

ORCID Icon &
Pages 425-442 | Received 21 Jan 2020, Accepted 16 Oct 2022, Published online: 03 Jan 2023
 

Abstract

This paper presents a design of lane change decision and control algorithm in highly dense traffic situation for self-driving vehicles using motion-based adaptive uncertainty propagation and Stochastic Model Predictive Control (SMPC). Essential ideas of the proposed algorithm are introduced; i) an optimal motion in a current situation with multiple criteria decision making (MCDM), ii) four steps to change lane successfully in the dense traffic situation which is modeled as a simple acceleration model based on real driving data, iii) motion-based adaptive uncertainty propagation to consider a model error. The proposed algorithm has been evaluated via simulation studies in MATLAB/Simulink and CARSIM. The simulation results show the effectiveness of the proposed algorithm and its performance for changing lane in the highly-dense traffic situation.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 419.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.