112
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Two-Temperature Generalized Thermoelasticity in a Fiber-Reinforced Hollow Cylinder Under Thermal Shock

, &
Pages 367-390 | Published online: 24 Jul 2013
 

Abstract

This paper deals with the thermoelastic interactions in a transversely isotropic, infinite hollow cylinder in which the boundaries are stress-free. There is no temperature in the inner boundary and heat flux is applied on the outer boundary. In the context of two-temperature generalized thermoelasticity theory, the three-phase-lag thermoelastic model and Green Naghdi model III (GN-III) are employed to study the thermophysical quantities. The Laplace transform is used to transform the coupled equations into the Laplace transformed domain. Then two different methods, the Galerkin finite element technique and eigen-value approach, are employed to solve the resulting equations in the transformed domain. The numerical inversion of the transform is carried out using Fourier-series expansion techniques. The physical quantities have been computed numerically and presented graphically in a number of figures. A comparison of the results for different theories (GN-III and three-phase-lag model) and for two different methods are presented.

Acknowledgments

We are grateful to Prof. S. C. Bose of the Department of Applied Mathematics, University of Calcutta for his kind help and guidance in the preparation of the paper. We also express our sincere thanks to the reviewers for their valuable suggestions for the improvement of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 646.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.