87
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Production of biodiesel from food processing waste using response surface methodology

&
Pages 2799-2808 | Published online: 03 Oct 2016
 

ABSTRACT

The optimum conditions for biodiesel production by the transesterification of waste oil form the pork grilling process in the food factory in Udon Thani, Thailand, using NaOH and KOH as catalysts, has been investigated. A Box–Behnken Design (BBD) followed by a Response Surface Methodology (RSM) with 30 runs was used to assess the significance of three factors: the methanol to oil molar ratio, the amount of NaOH and KOH used, and the reaction time required to achieve the optimum percent fatty acid methyl ester (%FAME). The measured %FAME following transesterification using NaOH as a catalyst was an optimum 95.6% with a methanol to oil molar ratio of 12.2:1, a NaOH percentage mass fraction of 0.49% and a reaction time of 63 min. Using KOH as a catalyst, the %FAME was an optimum 93.0% with a methanol to oil molar ratio of 12:1, a KOH percentage mass fraction of 0.61% and a reaction time of 72 min. The coefficient of determination (R2) for regression equations were 98.55% and 93.99%, respectively. The probability value (P<0.05) demonstrated a very good significance for the regression model. The physicochemical properties of the biodiesel obtained from the waste oil met the ASTM 6751 biodiesel standard, illustrating that waste oil from the pork grilling process can be used as a raw material for biodiesel production by transesterification.

Funding

The study was supported by the Office of the Higher Education Commission for her PhD program (CHE). The support from the Ministry of Education of Thailand and the Udon Thani Rajabhat University is also gratefully acknowledged.

Additional information

Funding

The study was supported by the Office of the Higher Education Commission for her PhD program (CHE). The support from the Ministry of Education of Thailand and the Udon Thani Rajabhat University is also gratefully acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.