633
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Assessment of Thermal Properties via Nanosecond Thermoreflectance Method

, &
Pages 245-257 | Received 23 Apr 2015, Accepted 27 Jul 2015, Published online: 15 Dec 2015
 

Abstract

Nanosecond time-domain thermoreflectance (ns-TDTR) is an all optical method of determining independently a variety of thermal parameters of both homogeneous and layered materials. Despite its relative experimental simplicity, the sensitivity of the temperature decay (measured by the transient reflectivity signal) to the relevant thermal properties has yet to be fully characterized. In principle, it is possible to simultaneously extract multiple thermal parameters from a single measurement. In practice, however, changes to several of these parameters may result in experimentally indistinguishable variations to the transient reflectivity signal. In this work, we focus on investigating thermal properties of bulk material and the contact resistance between the thin-film coating that is needed for the ns-TDTR method and the bulk substrate. To extract multiple properties from one temperature decay trace, we divide the data into temporal sub-regions known to be influenced to different degrees by each individual thermal parameter and iteratively fit with a 1-D heat conduction model to independently determine the contact resistance and cross-plane thermal conductivity.

Notes

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/umte

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 577.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.