494
Views
29
CrossRef citations to date
0
Altmetric
Articles

An Enhanced Finite Element Macro-Model for the Realistic Simulation of Localized Cracks in Masonry Structures: A Large-Scale Application

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 432-447 | Published online: 02 Aug 2017
 

ABSTRACT

Finite element macro-modeling approaches are widely used for the analysis of large-scale masonry structures. Despite their efficiency, they still face two important challenges: the realistic representation of damage and a reasonable independency of the numerical results to the used discretization. In this work, the classical smeared crack approach is enhanced with a crack-tracking algorithm, originating from the analysis of localized cracking in quasi-brittle materials. The proposed algorithm is for the first time applied to a large-scale wall exhibiting multiple shear and flexural cracking. Discussion covers structural aspects, as the response of the structure under different assumptions regarding the floor rigidity, but also numerical issues, commonly overlooked in the simulation of large structures, such the mesh-dependency of the numerical results.

View correction statement:
Correction

Funding

This research has received the financial support from the MINECO (Ministerio de Economia y Competitividad of the Spanish Government) and the ERDF (European Regional Development Fund) through the the MULTIMAS project (Multiscale techniques for the experimental and numerical analysis of the reliability of masonry structures, ref. num. BIA2015-63882-P) and the EACY project (Enhanced accuracy computational and experimental framework for strain localization and failure mechanisms, ref. num MAT 2013-48624-C2-1-P).

Additional information

Funding

This research has received the financial support from the MINECO (Ministerio de Economia y Competitividad of the Spanish Government) and the ERDF (European Regional Development Fund) through the the MULTIMAS project (Multiscale techniques for the experimental and numerical analysis of the reliability of masonry structures, ref. num. BIA2015-63882-P) and the EACY project (Enhanced accuracy computational and experimental framework for strain localization and failure mechanisms, ref. num MAT 2013-48624-C2-1-P).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 53.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 174.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.