1,916
Views
68
CrossRef citations to date
0
Altmetric
Reviews

Flexible Polymeric Substrates for Electronic Applications

& ORCID Icon
Pages 630-667 | Received 21 Oct 2017, Accepted 01 May 2018, Published online: 29 May 2018
 

ABSTRACT

The miniaturization of electronics has been following Moore's Law for decades and has resulted in the development of sequentially evolutionized multifunctional nanoengineered devices. The conventional electronic devices are processed over planar hierarchically nanopatterned substrates having mechanical rigidity and stiffness which limit the degree of utility due to its inability to interface with soft curvilinear morphology, brittle nature, and inferior optical transparency. However, flexible substrates assembled over polymeric framework would, therefore, play a key role by offering light weighted thin film architecture, wearability, improved optical transparency, and morphological configuration to curvilinearity. The flexibility of substrate is defined when the material is processed such that individual component complies to a comparable degree of bending without deterioration of electronic/optoelectronic performance. Since the fabricated structure is pliable, the mechanical integrity of the structure governs the electromechanical performance of flexible electronic devices. The structure may undergo delamination, which occurs due to the stress field gradient developed due to the coefficient of thermal expansion, thereby generating a built-in strain potentially capable of breaking the adhering bonds. This article provides a consolidated review of numerous processing techniques to fabricate flexible electronics ranging from printing, sol-gel, chemical vapor deposition to chemical synthesis route, etc. and their applications in thin-film transistors, solar cells, sensors, health monitoring e-skins, optical devices, etc. along with a theoretical mechanical two layer film substrate model.

Acknowledgments

The authors would like to thank Dr. Surendra Pal Vice Chancellor, Defence Institute of Advanced Technology (DU), Pune for the support. Authors also acknowledge Mr. Ramdayal Yadav for his continuous technical support during the preparation of manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,716.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.