216
Views
9
CrossRef citations to date
0
Altmetric
Research articles

Uncertainty reduction in water distribution network modelling using system inflow data

, &
Pages 69-79 | Received 10 Apr 2008, Accepted 17 Oct 2008, Published online: 07 Apr 2009
 

Abstract

In water distribution network (WDN) modelling, nodal demand is the sum of flows taken by users associated with a computational node. User demands are not fixed in time; rather they are stochastic. Hence, nodal demand is a model parameter with high uncertainty, which is propagated throughout the WDN model, thus also rendering the output values (node pressures and pipe discharges) uncertain. Total water inflow into the network can be accurately measured using flow meters. This paper investigates how knowledge of system inflow can be used as a constraint in WDN modelling, taking into consideration the uncertain nodal demands, and consequently reducing the uncertainty of the model output. Fuzzy sets were used to represent the uncertain demands and modified genetic algorithms were used to find the optimal solutions. As a test case, a set of data from a real WDN was used. The uncertainty of the WDN model output was computed for two cases: first, with the total network inflow taken into consideration; and second, with the inflow used as a constraint. Although the methodology that handles the constraints needs significantly greater computational effort, its results provide a more realistic insight into model uncertainty. The proposed methodology was verified using Monte Carlo simulation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 239.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.