Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 3, 2007 - Issue 4
249
Views
13
CrossRef citations to date
0
Altmetric
Original Article

Finite element reliability analysis of chloride ingress into reinforced concrete structures

&
Pages 355-366 | Received 02 Sep 2005, Accepted 21 Dec 2005, Published online: 28 Sep 2007
 

Abstract

For many reinforced concrete structures corrosion of the reinforcement is an important problem since it can result in maintenance and repair actions. Further, a reduction of the load-bearing capacity can occur. In the present paper the Finite Element Reliability Method (FERM) is employed for obtaining the probability of exceeding a critical chloride concentration level at the reinforcement bars, both using Monte Carlo Simulation (MCS) and the First Order Reliability Method (FORM). The chloride ingress is modelled by the Finite Element Method (FEM) and the diffusion coefficient, surface chloride concentration and reinforcement cover depth are modelled by stochastic fields, which are discretized using the Expansion Optimum Linear Estimation (EOLE) approach. The response gradients needed for FORM analysis are derived analytically using the Direct Differentiation Method (DDM). As an example, a bridge pier in a marine environment is considered and the results are given in terms of distributions of time for initiation of corrosion.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 298.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.