1,053
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Unsteady hydromagnetic-free convection flow with suction/injection

, &
Pages 136-145 | Received 18 Jul 2018, Accepted 04 Nov 2018, Published online: 20 Nov 2018

Figures & data

Figure 1. Schematic of the problem.

Figure 1. Schematic of the problem.

Figure 2. Velocity profile showing the effect of m1 for (a) λ=0and(b) λ=1 for impulsive motion (Pr=1.0,Gr=1.0,s=0.5).

Figure 2. Velocity profile showing the effect of m1 for (a) λ=0and(b) λ=1 for impulsive motion (Pr=1.0,Gr=1.0,s=0.5).

Figure 3. Velocity profile showing the effect of m1 for (a) λ=0and(b) λ=1 for accelerated motion (Pr=1.0,Gr=1.0).

Figure 3. Velocity profile showing the effect of m1 for (a) λ=0and(b) λ=1 for accelerated motion (Pr=1.0,Gr=1.0).

Figure 4. Velocity profile showing the effect of Gr for (a) λ=0and(b) λ=1 for impulsive motion (Pr=1.0,t=0.5,m1=1.0).

Figure 4. Velocity profile showing the effect of Gr for (a) λ=0and(b) λ=1 for impulsive motion (Pr=1.0,t=0.5,m1=1.0).

Figure 5. Velocity profile showing the effect of Gr for (a) λ=0and(b) λ=1 for accelerated motion (Pr=1.0,t=0.5,m1=1.0).

Figure 5. Velocity profile showing the effect of Gr for (a) λ=0and(b) λ=1 for accelerated motion (Pr=1.0,t=0.5,m1=1.0).

Figure 6. Velocity profile showing the effect of suction/injection parameter s for (a) λ=0and(b) λ=1 for impulsive motion (Pr=1.0,t=0.5,m1=1.0).

Figure 6. Velocity profile showing the effect of suction/injection parameter s for (a) λ=0and(b) λ=1 for impulsive motion (Pr=1.0,t=0.5,m1=1.0).

Figure 7. Velocity profile showing the effect of suction/injection parameter s for (a)λ=0and(b)λ=1 for accelerated motion (Pr=1.0,m1=1.0).

Figure 7. Velocity profile showing the effect of suction/injection parameter s for (a)λ=0and(b)λ=1 for accelerated motion (Pr=1.0,m1=1.0).

Figure 8. Variation of skin friction versus time for different values of m1with (a)λ=0and(b)λ=1for impulsive motion (Gr=1.0,Pr=1.0).

Figure 8. Variation of skin friction versus time for different values of m1with (a)λ=0and(b)λ=1for impulsive motion (Gr=1.0,Pr=1.0).

Figure 9. Variation of skin friction versus time for different values of m1with (a)λ=0and(b)λ=1for accelerated motion (Gr=1.0,Pr=1.0).

Figure 9. Variation of skin friction versus time for different values of m1with (a)λ=0and(b)λ=1for accelerated motion (Gr=1.0,Pr=1.0).

Figure 10. Variation of skin friction versus time for different values of Gr for (a)λ=0and(b)λ=1 for impulsive motion (m1=1.0,Pr=1.0,s=0.5).

Figure 10. Variation of skin friction versus time for different values of Gr for (a)λ=0and(b)λ=1 for impulsive motion (m1=1.0,Pr=1.0,s=0.5).

Figure 11. Variation of skin friction versus time for different values of Gr for (a)λ=0and(b)λ=1 for accelerated motion ( (m1=1.0,Pr=1.0,s=0.5).

Figure 11. Variation of skin friction versus time for different values of Gr for (a)λ=0and(b)λ=1 for accelerated motion ( (m1=1.0,Pr=1.0,s=0.5).

Table 1. Numerical comparison of velocity obtained using the Riemann-sum approximation method and those obtained using the convolution integrals method by Chandran et al. [Citation13] at Gr=1.0, t=0.1, s0 (impulsive case).

Table 2. Numerical comparison of velocity obtained using the Riemann-sum approximation method and those obtained using the convolution integrals method by Chandran et al. [Citation13] at Gr=1.0, t=0.1, s0 (impulsive case).

Table 3. Numerical comparison of velocity obtained using the Riemann-sum approximation method and those obtained using the convolution integrals method by Chandran et al. [Citation13] at Gr=1.0, t=0.1, s0 (accelerated case).

Table 4. Numerical comparison of velocity obtained using the Riemann-sum approximation method and those obtained using the convolution integrals method by Chandran et al. [Citation13] at Gr=1.0, t=0.1, s0 (accelerated case).

Table 5. Numerical comparison of skin friction obtained using the Riemann-sum approximation method and those obtained using the convolution integrals method by Chandran et al. [Citation13] [impulsive] Gr=1.0, t=0.1, s0.

Table 6. Numerical comparison of skin friction obtained using the Riemann-sum approximation method and those obtained using the convolution integrals method by Chandran et al. [Citation13] [accelerated case] Gr=1.0, t=0.1, s0.