1,025
Views
15
CrossRef citations to date
0
Altmetric
Research Articles

Second law analysis of magnetized Casson nanofluid flow in squeezing geometry with porous medium and thermophysical influence

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1013-1026 | Received 09 Oct 2021, Accepted 30 Nov 2021, Published online: 15 Dec 2021

Figures & data

Figure 1. Model physical abstract.

Figure 1. Model physical abstract.

Figure 2. Convergence/residual error analysis.

Figure 2. Convergence/residual error analysis.

Table 1. Comparison results of Skin friction (u(0)) and heat transfer (H(0)) coefficients for different values of Z when ξ1=ξ2=ξ3=0, Pr = 1, Nb = Nt = 0, Ec=Ecr=0, V0=Bi1=1 F1=F2=F3=0 and β=.

Table 2. Comparison results of the velocity (u(η)) and temperature (H(η)) and concentration (G(η)) profiles for different values of variable (η) when Z = 1.0, ξ1=ξ2=ξ3=0, Ec = 0 Ecr=0.1, Sc = 1, Pr = 2, Nb = Nt = 0, δ=0.1, V0=0.1, α=Bi1=Bi2=0.2 KD=0.1, Ha = 1, Da=5.0, Pr = 7.2, Nt = Nb = 0.1 and β=0.5.

Figure 3. Influence of darcy number (Da) on (a) axial velocity, (b) radial velocity, (c) temperature, (d) nanoparticle concentration.

Figure 3. Influence of darcy number (Da) on (a) axial velocity, (b) radial velocity, (c) temperature, (d) nanoparticle concentration.

Figure 4. Influence of thermophoresis number (Nt) on (a) temperature, (b) nanoparticle concentration.

Figure 4. Influence of thermophoresis number (Nt) on (a) temperature, (b) nanoparticle concentration.

Figure 5. Influence of Brownian motion number (Nb) on (a) temperature, (b) nanoparticle concentration.

Figure 5. Influence of Brownian motion number (Nb) on (a) temperature, (b) nanoparticle concentration.

Figure 6. Influence of (a) viscosity, (b) thermal conductivity, (c) Brownian motion, (d) Casson number: on entropy generation rate.

Figure 6. Influence of (a) viscosity, (b) thermal conductivity, (c) Brownian motion, (d) Casson number: on entropy generation rate.

Figure 7. Influence of (a) Prandtl number, (b) Eckert number, (c) squeezing rate, and (d) thermophoresis number: on entropy generation rate.

Figure 7. Influence of (a) Prandtl number, (b) Eckert number, (c) squeezing rate, and (d) thermophoresis number: on entropy generation rate.

Figure 8. Influence of (a) darcy number, (b) magnetic number on entropy generation rate.

Figure 8. Influence of (a) darcy number, (b) magnetic number on entropy generation rate.

Figure 9. Influence of (a) viscosity, (b) thermal conductivity, (c) squeezing rate, (d) Casson number: on irreversibility distribution ratio.

Figure 9. Influence of (a) viscosity, (b) thermal conductivity, (c) squeezing rate, (d) Casson number: on irreversibility distribution ratio.

Figure 10. Influence of (a) Prandtl number, (b) Eckert number, (c) Darcy number, (d) magnetic number: on irreversibility distribution ratio.

Figure 10. Influence of (a) Prandtl number, (b) Eckert number, (c) Darcy number, (d) magnetic number: on irreversibility distribution ratio.