585
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Influence of activation energy on triple diffusive entropy optimized time-dependent quadratic mixed convective magnetized flow

ORCID Icon &
Pages 689-702 | Received 02 Jun 2022, Accepted 18 Jul 2022, Published online: 25 Jul 2022

Figures & data

Figure 1. Flow model.

Figure 1. Flow model.

Table 1. A comparison of the current time-independent findings with [Citation30] and [Citation31] at Pr=0.73.

Figure 2. Impact of pressure gradient parameter m and time τ on F(ξ,η,τ) for ϕ(τ)=1+ατ2 when α=0.5, ξ=0.5, Ri=10, βt=βc1=βc2=0.1, Nc1=Nc2=0.1, M=Ec=0.1, n1=n2=0.2, Kc1=Kc2=E1=E2=δ=0.1, Re=5.

Figure 2. Impact of pressure gradient parameter m and time τ on F(ξ,η,τ) for ϕ(τ)=1+ατ2 when α=0.5, ξ=0.5, Ri=10, βt=βc1=βc2=0.1, Nc1=Nc2=0.1, M=Ec=0.1, n1=n2=0.2, Kc1=Kc2=E1=E2=δ=0.1, Re=5.

Figure 3. Impact of pressure gradient parameter m and unsteadiness parameter α on Rex1/2Cfx when ξ=0.5, Ri=10, βt=βc1=βc2=0.1, Nc1=Nc2=0.1, M=Ec=0.1, n1=n2=0.2, Kc1=Kc2=E1=E2=δ=0.1.

Figure 3. Impact of pressure gradient parameter m and unsteadiness parameter α on Rex1/2Cfx when ξ=0.5, Ri=10, βt=βc1=βc2=0.1, Nc1=Nc2=0.1, M=Ec=0.1, n1=n2=0.2, Kc1=Kc2=E1=E2=δ=0.1.

Figure 4. Impact of pressure gradient parameter m and unsteadiness parameter α on Rex1/2Sh1x,Rex1/2Sh2x when ξ=0.5, Ri=10, βt=βc1=βc2=0.1, Nc1=Nc2=0.1, M=Ec=0.1, n1=n2=0.2, Kc1=Kc2=E1=E2=δ=0.1.

Figure 4. Impact of pressure gradient parameter m and unsteadiness parameter α on Rex−1/2Sh1x,Rex−1/2Sh2x when ξ=0.5, Ri=10, βt=βc1=βc2=0.1, Nc1=Nc2=0.1, M=Ec=0.1, n1=n2=0.2, Kc1=Kc2=E1=E2=δ=0.1.

Figure 5. Effect of magnetic parameter M, axial distance ξ and time τ on F(ξ,η,τ) for ϕ(τ)=1+ατ2 when α=0.5, Ri=10, βt=βc1=βc2=0.1, Nc1=Nc2=0.1, Ec=0.1, m=0.2, n1=n2=0.2, Kc1=Kc2=E1=E2=δ=0.1, Re=5.

Figure 5. Effect of magnetic parameter M, axial distance ξ and time τ on F(ξ,η,τ) for ϕ(τ)=1+ατ2 when α=0.5, Ri=10, βt=βc1=βc2=0.1, Nc1=Nc2=0.1, Ec=0.1, m=0.2, n1=n2=0.2, Kc1=Kc2=E1=E2=δ=0.1, Re=5.

Figure 6. Effect of magnetic parameter M, axial distance ξ and unsteadiness parameter α on Rex1/2Cfx when Ri=10, βt=βc1=βc2=0.1, Nc1=Nc2=0.1, Ec=0.1, m=0.2, n1=n2=0.2, Kc1=Kc2=E1=E2=δ=0.1.

Figure 6. Effect of magnetic parameter M, axial distance ξ and unsteadiness parameter α on Rex1/2Cfx when Ri=10, βt=βc1=βc2=0.1, Nc1=Nc2=0.1, Ec=0.1, m=0.2, n1=n2=0.2, Kc1=Kc2=E1=E2=δ=0.1.

Figure 7. Effect of quadratic combined convection parameter βt and time τ on (H,S)(ξ,η,τ) for ϕ(τ)=1+ατ2 when α=0.5, ξ=0.5, Ri=10, βc1=βc2=0.1, Nc1=Nc2=0.1, M=Ec=0.1, m=0.2, n1=n2=0.2, Kc1=Kc2=E1=E2=δ=0.1, Re=5.

Figure 7. Effect of quadratic combined convection parameter βt and time τ on (H,S)(ξ,η,τ) for ϕ(τ)=1+ατ2 when α=0.5, ξ=0.5, Ri=10, βc1=βc2=0.1, Nc1=Nc2=0.1, M=Ec=0.1, m=0.2, n1=n2=0.2, Kc1=Kc2=E1=E2=δ=0.1, Re=5.

Figure 8. Effect of quadratic combined convection parameter βt and unsteadiness parameter α on Rex1/2Sh1x,Rex1/2Sh2x when ξ=0.5, Ri=10, βc1=βc2=0.1, Nc1=Nc2=0.1, M=Ec=0.1, m=0.2, n1=n2=0.2, Kc1=Kc2=E1=E2=δ=0.1.

Figure 8. Effect of quadratic combined convection parameter βt and unsteadiness parameter α on Rex−1/2Sh1x,Rex−1/2Sh2x when ξ=0.5, Ri=10, βc1=βc2=0.1, Nc1=Nc2=0.1, M=Ec=0.1, m=0.2, n1=n2=0.2, Kc1=Kc2=E1=E2=δ=0.1.

Figure 9. Influence of Kc1, activation energy E1, and time τ on H(ξ,η,τ) for ϕ(τ)=1+ατ2 when α=0.5, ξ=0.5, Ri=10, βt=βc1=βc2=0.1, Nc1=Nc2=0.1, M=Ec=0.1, m=0.2, n1=n2=0.2, Kc2=E2=δ=0.1, Re=5.

Figure 9. Influence of Kc1, activation energy E1, and time τ on H(ξ,η,τ) for ϕ(τ)=1+ατ2 when α=0.5, ξ=0.5, Ri=10, βt=βc1=βc2=0.1, Nc1=Nc2=0.1, M=Ec=0.1, m=0.2, n1=n2=0.2, Kc2=E2=δ=0.1, Re=5.

Figure 10. Influence of Kc2, activation energy E2, and time τ on S(ξ,η,τ) for ϕ(τ)=1+ατ2 when α=0.5, ξ=0.5, Ri=10, βt=βc1=βc2=0.1, Nc1=Nc2=0.1, M=Ec=0.1, m=0.2, n1=n2=0.2, Kc1=E1=δ=0.1, Re=5.

Figure 10. Influence of Kc2, activation energy E2, and time τ on S(ξ,η,τ) for ϕ(τ)=1+ατ2 when α=0.5, ξ=0.5, Ri=10, βt=βc1=βc2=0.1, Nc1=Nc2=0.1, M=Ec=0.1, m=0.2, n1=n2=0.2, Kc1=E1=δ=0.1, Re=5.

Figure 11. Influence of Kc1, activation energy E1, and unsteadiness parameter α on Rex1/2Sh1x when ξ=0.5, Ri=10, βt=βc1=βc2=0.1, Nc1=Nc2=0.1, M=Ec=0.1, m=0.2, n1=n2=0.2, Kc2=E2=δ=0.1.

Figure 11. Influence of Kc1, activation energy E1, and unsteadiness parameter α on Rex−1/2Sh1x when ξ=0.5, Ri=10, βt=βc1=βc2=0.1, Nc1=Nc2=0.1, M=Ec=0.1, m=0.2, n1=n2=0.2, Kc2=E2=δ=0.1.

Figure 12. Influence of Kc2, activation energy E2, and unsteadiness parameter α on Rex1/2Sh2x when ξ=0.5, Ri=10, βt=βc1=βc2=0.1, Nc1=Nc2=0.1, M=Ec=0.1, m=0.2, n1=n2=0.2, Kc2=E2=δ=0.1.

Figure 12. Influence of Kc2, activation energy E2, and unsteadiness parameter α on Rex−1/2Sh2x when ξ=0.5, Ri=10, βt=βc1=βc2=0.1, Nc1=Nc2=0.1, M=Ec=0.1, m=0.2, n1=n2=0.2, Kc2=E2=δ=0.1.

Figure 13. Effect of Ri, βt and α on Rex1/2Cfx when Ri=10, ξ=0.5, βc1=βc2=0.1, Nc1=Nc2=0.1, M=Ec=0.1, m=0.2, Kc1=Kc2=E1=E2=δ=0.1,n1=n2=0.2.

Figure 13. Effect of Ri, βt and α on Rex1/2Cfx when Ri=10, ξ=0.5, βc1=βc2=0.1, Nc1=Nc2=0.1, M=Ec=0.1, m=0.2, Kc1=Kc2=E1=E2=δ=0.1,n1=n2=0.2.

Figure 14. Effect of Ri, βt and α on Rex1/2Nux when Ri=10, ξ=0.5, βc1=βc2=0.1, Nc1=Nc2=0.1, M=Ec=0.1, m=0.2, Kc1=Kc2=E1=E2=δ=0.1, n1=n2=0.2.

Figure 14. Effect of Ri, βt and α on Rex−1/2Nux when Ri=10, ξ=0.5, βc1=βc2=0.1, Nc1=Nc2=0.1, M=Ec=0.1, m=0.2, Kc1=Kc2=E1=E2=δ=0.1, n1=n2=0.2.

Figure 15. Impact of Br on SG for ϕ(τ)=1+ατ2, α=0.5, when Ri=10, ξ=0.5, Sc1=160, Sc2=340, Re=5, βt=βc1=βc1=Nc1=Nc2=0.1, M1=M2=M3=0.5, and ΩT=Ωc1=Ωc2=0.5.

Figure 15. Impact of Br on SG for ϕ(τ)=1+ατ2, α=0.5, when Ri=10, ξ=0.5, Sc1=160, Sc2=340, Re=5, βt=βc1=βc1=Nc1=Nc2=0.1, M1=M2=M3=0.5, and ΩT=Ωc1=Ωc2=0.5.

Figure 16. Impact of Br on Be for ϕ(τ)=1+ατ2, α=0.5, when Ri=10, ξ=0.5, Sc1=160, Sc2=340, Re=5, βt=βc1=βc1=Nc1=Nc2=0.1, M1=M2=M3=0.5, and ΩT=Ωc1=Ωc2=0.5.

Figure 16. Impact of Br on Be for ϕ(τ)=1+ατ2, α=0.5, when Ri=10, ξ=0.5, Sc1=160, Sc2=340, Re=5, βt=βc1=βc1=Nc1=Nc2=0.1, M1=M2=M3=0.5, and ΩT=Ωc1=Ωc2=0.5.

Figure 17. Impact of Re on SG for ϕ(τ)=1+ατ2, α=0.5, when Ri=10, ξ=0.5, Sc1=160, Sc2=340, Br=0.1, βt=βc1=βc1=Nc1=Nc2=0.1, M1=M2=M3=0.5, and ΩT=Ωc1=Ωc2=0.5.

Figure 17. Impact of Re on SG for ϕ(τ)=1+ατ2, α=0.5, when Ri=10, ξ=0.5, Sc1=160, Sc2=340, Br=0.1, βt=βc1=βc1=Nc1=Nc2=0.1, M1=M2=M3=0.5, and ΩT=Ωc1=Ωc2=0.5.

Figure 18. Impact of ΩT on SG for ϕ(τ)=1+ατ2, α=0.5, when Ri=10, ξ=0.5, Sc1=160, Sc2=340, Br=0.1, βt=βc1=βc1=Nc1=Nc2=0.1, M1=M2=M3=0.5, Ωc1=Ωc2=0.5, and Re=5.

Figure 18. Impact of ΩT on SG for ϕ(τ)=1+ατ2, α=0.5, when Ri=10, ξ=0.5, Sc1=160, Sc2=340, Br=0.1, βt=βc1=βc1=Nc1=Nc2=0.1, M1=M2=M3=0.5, Ωc1=Ωc2=0.5, and Re=5.

Figure 19. Impact of ΩT on Be for ϕ(τ)=1+ατ2, α=0.5, when Ri=10, ξ=0.5, Sc1=160, Sc2=340, Br=0.1, βt=βc1=βc1=Nc1=Nc2=0.1, M1=M2=M3=0.5, Ωc1=Ωc2=0.5, and Re=5.

Figure 19. Impact of ΩT on Be for ϕ(τ)=1+ατ2, α=0.5, when Ri=10, ξ=0.5, Sc1=160, Sc2=340, Br=0.1, βt=βc1=βc1=Nc1=Nc2=0.1, M1=M2=M3=0.5, Ωc1=Ωc2=0.5, and Re=5.