158
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Novel multinary nanocomposite of GO/AlCrO3/SiO2/Mn3O4/SnO2: synthesis and electrochemical performance for energy storage system

, , , , , , , & show all
Article: 2351619 | Received 20 Jan 2023, Accepted 01 May 2024, Published online: 17 May 2024

Figures & data

Figure 1. Graphene mechanical and electrical properties.

Figure 1. Graphene mechanical and electrical properties.

Figure 2. XRD pattern of (a) GO, (b) AlCrO3 and (c) GO@AlCrO3@SiO2@Mn3O4@SnO2 nanocomposite.

Figure 2. XRD pattern of (a) GO, (b) AlCrO3 and (c) GO@AlCrO3@SiO2@Mn3O4@SnO2 nanocomposite.

Table 1. Lattice parameters, particle, crystalline size and strain values of compound.

Figure 3. WH plot curves of (a) AlCrO3 and (b) GO@AlCrO3@SiO2@Mn3O4 nanocomposite.

Figure 3. WH plot curves of (a) AlCrO3 and (b) GO@AlCrO3@SiO2@Mn3O4 nanocomposite.

Table 2. Miller indices and peak lists of AlCrO3 and GO/AlCrO3/SiO2/Mn3O4/SnO2 nanocomposite.

Figure 4. SEM images of (a) GO (b) GO@AlCrO3@SiO2@Mn3O4@SnO2 (c) AlCrO3.

Figure 4. SEM images of (a) GO (b) GO@AlCrO3@SiO2@Mn3O4@SnO2 (c) AlCrO3.

Figure 5. Grains diameter variation and Histogram distribution of GO@AlCrO3@SiO2@Mn3O4@SnO2 nanocomposite.

Figure 5. Grains diameter variation and Histogram distribution of GO@AlCrO3@SiO2@Mn3O4@SnO2 nanocomposite.

Figure 6. FTIR spectra of (a) GO@AlCrO3@SiO2@Mn3O4@SnO2 (b) GO (c) Mn3O4 and (d) AlCrO3.

Figure 6. FTIR spectra of (a) GO@AlCrO3@SiO2@Mn3O4@SnO2 (b) GO (c) Mn3O4 and (d) AlCrO3.

Figure 7. EDs spot and spectra of AlCrO3.

Figure 7. EDs spot and spectra of AlCrO3.

Figure 8. Energy dispersive spot and spectra of GO@AlCrO3@SiO2@Mn3O4@SnO2 nanocomposite.

Figure 8. Energy dispersive spot and spectra of GO@AlCrO3@SiO2@Mn3O4@SnO2 nanocomposite.

Figure 9. Raman spectra of (a) GO and (b) GO@AlCrO3@SiO2@Mn3O4@SnO2 nanocomposite.

Figure 9. Raman spectra of (a) GO and (b) GO@AlCrO3@SiO2@Mn3O4@SnO2 nanocomposite.

Figure 10. Band Gap of GO@AlCrO3@SiO2@Mn3O4@SnO2 nanocomposite.

Figure 10. Band Gap of GO@AlCrO3@SiO2@Mn3O4@SnO2 nanocomposite.

Figure 11. Zeta potential of GO@AlCrO3@SiO2@Mn3O4@SnO2 nanocomposite.

Figure 11. Zeta potential of GO@AlCrO3@SiO2@Mn3O4@SnO2 nanocomposite.

Figure 12. Cyclic voltammetry at various scan rates GO@AlCrO3@SiO2@Mn3O4@SnO2 nanocomposite.

Figure 12. Cyclic voltammetry at various scan rates GO@AlCrO3@SiO2@Mn3O4@SnO2 nanocomposite.

Figure 13. The specific capacitance of nanocomposite at various scan rates.

Figure 13. The specific capacitance of nanocomposite at various scan rates.

Table 3. Measurements of specific capacitance of GO@AlCrO3@SiO2@Mn3O4@SnO2 at various scan rates.

Figure 14. (a) GCD curves and Ragone plot of GO@AlCrO3@SiO2@Mn3O4@SnO2 nanocomposite in IM KOH electrolyte (b) Cycling performance.

Figure 14. (a) GCD curves and Ragone plot of GO@AlCrO3@SiO2@Mn3O4@SnO2 nanocomposite in IM KOH electrolyte (b) Cycling performance.

Figure 15. EIS spectra of GO@AlCrO3@SiO2@Mn3O4@SnO2 nanocomposite in IM KOH electrolyte solution.

Figure 15. EIS spectra of GO@AlCrO3@SiO2@Mn3O4@SnO2 nanocomposite in IM KOH electrolyte solution.

Table 4. GO@AlCrO3@SiO2@Mn3O4@SnO2 nanocomposite electrode material parameters.

Table 5. Comparison of multinary composite with previous literature.