578
Views
41
CrossRef citations to date
0
Altmetric
Articles

Application of artificial bee colony algorithm for inverse modelling of a solar collector

, , &
Pages 887-908 | Received 09 Oct 2015, Accepted 03 Jul 2016, Published online: 20 Jul 2016

Figures & data

Figure 1. Schematic of double-glazed solar collector.

Figure 1. Schematic of double-glazed solar collector.

Figure 2. Validation of the forward model; Ta = 303 K (30 °C) and ha = 25 W/(m2 K).

Figure 2. Validation of the forward model; Ta = 303 K (30 °C) and ha = 25 W/(m2 K).

Table 1. Estimated values of parameters for ambient temperature, Ta = 303 K and wind heat transfer coefficient, ha = 25 W/(m2 K).

Figure 3. Comparison of exact and reconstructed heat loss factor distributions; Ta = 303 K (30 °C) and ha = 25 W/(m2 K).

Figure 3. Comparison of exact and reconstructed heat loss factor distributions; Ta = 303 K (30 °C) and ha = 25 W/(m2 K).

Figure 4. Variation of the objective function with iterations of ABC algorithm (noise-free case); (a) history of 500 iterations, (b) history of first 20 iterations; Ta = 303 K (30 °C) and ha = 25 W/(m2 K).

Figure 4. Variation of the objective function with iterations of ABC algorithm (noise-free case); (a) history of 500 iterations, (b) history of first 20 iterations; Ta = 303 K (30 °C) and ha = 25 W/(m2 K).

Figure 5. Variation of estimated parameters with iterations of ABC algorithm (noise-free case); Ta = 303 K (30 °C) and ha = 25 W/(m2 K).

Figure 5. Variation of estimated parameters with iterations of ABC algorithm (noise-free case); Ta = 303 K (30 °C) and ha = 25 W/(m2 K).

Figure 6. Comparison of exact and reconstructed heat loss factor distributions; β=45=0.7854rad., L12 = L23 = 0.025 m, tg = 3 mm, kg = 1.02 W/(m K), Ta = 303 K (30 °C) and ha = 25 W/(m2 K).

Figure 6. Comparison of exact and reconstructed heat loss factor distributions; β=45∘=0.7854rad., L12 = L23 = 0.025 m, tg = 3 mm, kg = 1.02 W/(m K), Ta = 303 K (30 °C) and ha = 25 W/(m2 K).

Figure 7. Variation of the objective function with iterations of ABC algorithm (noise-induced case) for Run 6 of Table ; (a) history of 500 iterations, (b) history of first 20 iterations; Ta = 303 K (30 °C) and ha = 25 W/(m2 K).

Figure 7. Variation of the objective function with iterations of ABC algorithm (noise-induced case) for Run 6 of Table 1; (a) history of 500 iterations, (b) history of first 20 iterations; Ta = 303 K (30 °C) and ha = 25 W/(m2 K).

Figure 8. Variation of estimated parameters with iterations of ABC algorithm (noise-induced case) for Run 6 of Table ; Ta = 303 K (30 °C) and ha = 25 W/(m2 K).

Figure 8. Variation of estimated parameters with iterations of ABC algorithm (noise-induced case) for Run 6 of Table 1; Ta = 303 K (30 °C) and ha = 25 W/(m2 K).

Figure 9. Comparison of sensitivity coefficients of different estimated parameters; β=45=0.7854rad, L12 = L23 = 0.025 m, tg = 3 mm, kg = 1.02 W/(m K), Ta = 303 K (30 °C) and ha = 25 W/(m2 K).

Figure 9. Comparison of sensitivity coefficients of different estimated parameters; β=45∘=0.7854rad, L12 = L23 = 0.025 m, tg = 3 mm, kg = 1.02 W/(m K), Ta = 303 K (30 °C) and ha = 25 W/(m2 K).

Table 2. Comparison of estimated parameters and objective functions obtained with different optimization methods after 500 iterations.

Figure 10. Comparison of objective functions for different optimization algorithms (a) history of 20 iterations, (b) history of 500 iterations; Ta = 303 K (30 °C) and ha = 25 W/(m2 K).

Figure 10. Comparison of objective functions for different optimization algorithms (a) history of 20 iterations, (b) history of 500 iterations; Ta = 303 K (30 °C) and ha = 25 W/(m2 K).

Table 3. Comparison of different optimization methods for 10 additional runs (500 iterations in each case).

Table 4. Estimated values of parameters for variable ambient conditions.

Figure 11. Comparison of objective functions for solar collector operating under varying ambient conditions (a) history of 200 iterations, (b) history of first 20 iterations.

Figure 11. Comparison of objective functions for solar collector operating under varying ambient conditions (a) history of 200 iterations, (b) history of first 20 iterations.

Figure 12. Variation of estimated parameters for ambient temperature, Ta = 295 K (22 °C) and wind heat transfer coefficient, ha = 20 W/(m2 K).

Figure 12. Variation of estimated parameters for ambient temperature, Ta = 295 K (22 °C) and wind heat transfer coefficient, ha = 20 W/(m2 K).

Figure 13. Variation of estimated parameters for ambient temperature, Ta = 308 K (35 °C) and wind heat transfer coefficient, ha = 30 W/(m2 K).

Figure 13. Variation of estimated parameters for ambient temperature, Ta = 308 K (35 °C) and wind heat transfer coefficient, ha = 30 W/(m2 K).

Figure 14. Variation of estimated parameters for ambient temperature, Ta = 290 K (17 °C) and wind heat transfer coefficient, ha = 28 W/(m2 K).

Figure 14. Variation of estimated parameters for ambient temperature, Ta = 290 K (17 °C) and wind heat transfer coefficient, ha = 28 W/(m2 K).

Figure 15. Comparison of exact and reconstructed heat loss factor distributions under different environmental conditions.

Figure 15. Comparison of exact and reconstructed heat loss factor distributions under different environmental conditions.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.